INTERNATIONAL INDICATIONS FOR HBOT

(from Jain, K.K. (1989) Oxygen in Physiology and Medicine. Thomas, Springfield--taken from U.S., Chinese, Japanese, and Russian HBO Committees)

- 1. Decompression Sickness
- 2. Air embolism
- 3. Poisoning: carbon monoxide, cyanide, hydrogensulfide, carbon tetrachloride.
- 4. Treatment of certain infections: gas gangrene, acute necrotizing fascitis, refractory mycoses, leprosy, osteomyelitis.
- 5. Plastic and reconstructive surgery:
 - for nonhealing wounds
 - as an aid to the survival of skin flaps with marginal circulation
 - as an aid to reimplantation surgery
 - as an adjunct to the treatment of burns
- 6. Traumatology: crush injuries, compartment syndrome, soft tissue sports injuries
- 7. Orthopedics: nonunion of fractures, bone grafts, osteoradionecrosis
- 8. Peripheral vascular disease: shock, myocardial ischemia, aid to cardiac surgery, ischemic gangrene, ischemic leg pain
- 9. Neurological: stroke, multiple sclerosis, migraine, cerebral edema, multi-infarct dementia, spinal cord injury and vascular diseases of the spinal cord, brain abscess, peripheral neuropathy, radiation myelitis, vegetative coma
- 10. Hematology: sickle cell crises, severe blood loss anemia
- 11. Ophthalmology: occlusion of central artery of retina
- 12. Gastro-intestinal: gastric ulcer, necrotizing enteroscolitis, paralytic ileus, pneumotoides cystoides intestinalis, hepatitis
- 13. For enhancement of radiosensitivity of malignant tumors
- 14. Otorhinolaryngology: sudden deafness, acute acoustic trauma, labyrinthitis, Meniere's disease, malignant otitis externa (chronic infection)
- 15. Lung diseases: lung abscess, pulmonary embolism (adjunct to surgery)
- 16. Endocrine: diabetes
- 17. Obstetrics: complicated pregnancy--diabetes, eclampsia, heart disease, placental hypoxia, fetal hypoxia, congenital heart disease of the neonate

- 18. Asphyxiation: drowning, smoke inhalation
- 19. Aid to rehabilitation: spastic hemiplegia of stroke, paraplegia, chronic myocardial insufficiency, peripheral vascular disease.

Bibliography

Hyperbaric Oxygen Therapy for Radiation-Induced Hemorrhagic Cystitis PM Hanno - Urology, 2018 - practiceupdate.com

Efficacy of hyperbaric oxygen therapy in bacterial biofilm eradication

NE Sanford, JE Wilkinson, H Nguyen... - Journal of Wound ..., 2018 magonlinelibrary.com

Hyperbaric oxygen therapy for chronic wounds P Kranke, MH Bennett, M Martyn-St James... - The Cochrane ..., 2015 - Wiley Online Library

Hyperbaric oxygen therapy for late radiation tissue injury MH Bennett, J Feldmeier, NB Hampson... - The Cochrane ..., 2016 - Wiley

A diabetic foot ulcer treated with hydrogel and hyperbaric oxygen therapy: a case study

P Aguiar, C Amaral, A Rodrigues... - Journal of wound ..., 2017 - magonlinelibrary.com

Amputation predictors in diabetic foot ulcers treated with hyperbaric oxygen

ST Kaplan, D Hemsinli, S Kaplan... - Journal of wound ..., 2017 - magonlinelibrary.com

A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers

ET Huang, J Mansouri, MH Murad, WS Joseph... - Undersea Hyperb 2015 -

Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review

RM Stoekenbroek, TB Santema, DA Legemate... - European journal of ..., 2014 - Elsevier

The role of hyperbaric oxygen therapy in the prevention and management of radiation-induced complications of the head and neck-a systematic review of literature

P Ravi, D Vaishnavi, A Gnanam, VBK Raja - Journal of Stomatology oral ...

Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes

Hyperbaric oxygen therapy improves health-related quality of life in patients with diabetes and chronic foot ulcer M Löndahl, M Landin-Olsson, P Katzman - Diabetic Medicine, 2011

Hyperbaric oxygen therapy as treatment of diabetic foot ulcers

M Löndahl - Diabetes/metabolism research and reviews, 2012 -

The role of hyperbaric oxygen in the treatment of diabetic foot ulcers

EK Tiaka, N Papanas, AC Manolakis... - Angiology, 2012 - journals.sagepub.com. Cited by 46 Related articles All 9 versions

[PDF] uhms.org

[PDF] A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers ET Huang, J Mansouri, MH Murad, WS Joseph... - Undersea Hyperb ..., 2015 -

Rheolife in Association with Biobarica now offers HBOT in Jamaica

HBOT has been used for over 50 years

PRESCRIPTION STRENGTH OXYGEN

Hyperoxia is achieved by breathing 100% oxygen via face mask in the hyperbaric chamber.

Rheolife usesBioBarica medium air systems with Revitalair* 430 chamber. A pressure of 1.4 ATM is used as recommended by The Undersea and Hyperbaric Medical Society (UHMS), to provide all the medical benefits of **HBOT** without the complexity and complications associated with higher pressure systems.

MECHANISMS OF ACTION

Reactive oxygen species (ROS), reactive nitrogen species (RNS), GF=growth factor, VEGF=vascular endothelial growth factor, HIF= hypoxia inducible factor, SPCs=stem/progenitor cells, HO-1 =heme oxygenase-1, HSPs=heat shock proteins.

HBO2 can stimulate healing in refractory wounds and irradiated tissues.

Cells within the wound exhibit increased collagen synthesis, growth factors production, improved cell migration and tube-formation functions. A separate free radical-based mechanism for augmentation of neovascularization by HBO2 is through SPCs. Hyperoxia stimulates bone marrow SPCs mobilization and also improves their functions once they home to peripheral sites.

Society (UHMS)-an organization representing physicians, nurses and technicians in the field of hyperbaric medicine-met with the Food and Drug Administration (FDA) and recommended HBOT for 14 specific conditions. More than 30 years later, those approved conditions remain much the same:

Leucocyte bacteria-killing capacity is enhanced with hyperoxia

The hyperbaric chamber represents an efficient tool that, together with conventional medical treatments, gives patients more chances of recovery.

HBOT for Intracranial Abscess The Undersea and Hyperbaric Medical abnormal immune systems.

HBOT for Air or Gas Embolism

An air or gas embolism is caused by air in the arteries caused by diving or an invasive medical procedure that punctures an artery or lung.

HBOT for Carbon Monoxide Poisoning

Carbon monoxide poisoning or CO poisoning complicated by cyanide poisoning. Also includes poisoning from methylene chloride.

HBOT for Gas Gangrene

The medical names for these severe infections of the muscle are clostridial myositis and myonecrosis.

HBOT for Crush injury

Classically defined as a hearing loss of at least 30 dB over at least three contiguous frequencies-occurring Acute ischemias (loss of blood flow)-usually caused within three days. This is the latest approved indication by heavy equipment. added by UHMS Board of Directors late 2011.

HBOT for Decompression Sickness

Decompression sickness is one of the first conditions treated with HBOT. It is brought on when a diver ascends too guickly and does not allow the oxygen in the body to expand at a safe rate.including problem wounds; this category out of five people with type 2 diabetes and can lead to amputation. Recently added to this category was central retinal artery occlusion, or "stroke of the eye," from blockages in the arteries of the eye.

HBOT for Severe Anemia

Severe Anemia is any acute, severe blood loss, such as from a wound on the battlefield or severe trauma.

(an accumulation of infected material); these abscesses of the brain are common in patients with

HBOT for Necrotizing soft tissue infections

From "flesh-eating bacteria," these severe infections usually progress rapidly.

HBOT for Osteomyelitis

Chronic bone infections that resist standard treatment most common in the lower leg after severe trauma.

HBOT for Delayed Radiation Injury

Radiation damages blood vessels, and the lack of blood supply eventually can cause wounds to form in soft tissue and bone.

HBOT for Compromised Skin Grafts and Flaps

Grafts and flaps of skin and other tissue (cartilage, bone, fat) are used in reconstructive surgery (such as breast reconstruction after a mastectomy). In some cases, blood supply to the graft or flap is compromised, causing complications.

HBOT for Thermal burn Injury

From fire or heat.

HBOT for Idiopathic Sudden Sensorineural Hearing Loss